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We describe the use of upwind monotonic interpolation methods for 
the solution of the time-dependent radiative transfer equation in both 
optically thin and thick media. These methods, originally developed to 
solve Eulerian advection problems in hydrodynamics, have the ability to 
propagate sharp features in the flow with very little numerical diffusion. 
We consider the implementation of both explicit and implicit versions of 
the method. The explicit version is able to keep radiation fronts resolved 
to only a few zones wide when higher order interpolation methods are 
used. Although traditional implementations of the implicit version 
suffer from large numerical diffusion, we describe an implicit method 
which considerably reduces this diffusion. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

To be useful, any numerical algorithm which solves the 
time-dependent equation of radiative transfer must be able 
to propagate steep features (such as ionization fronts) with 
as little numerical diffusion as possible. The occurrence of 
steep features is not unique to radiation transfer problems, 
but is a characteristic of all non-linear flows (for example, 
hydrodynamics). Hence, it is natural to consider the 
application of numerical methods developed for evolving 
these other non-linear systems to the solution of the transfer 
equation. 

In optically thin media, the transfer equation reduces to 
an advection equation, with the pattern speed given by the 
speed of light. Therefore, numerical algorithms for solving 
Eulerian advection problems should be appropriate for the 
solution of the transfer equation. In this paper, we describe 
the application of upwind monotonic interpolation 
methods for this purpose. We demonstrate with several 
test problems that, when applied to the time-dependent 
radiative transfer equation, these schemes can keep steep 

features in the radiation field resolved in fronts only a few 
zones wide, consistent with the performance of the methods 
in hydrodynamical problems. 

We begin in the next section with a description of 
the implementation of upwind monotonic interpolation 
methods for the solution of the time-dependent transfer 
equation. We have implemented both an operator-split 
scheme, in which the advection term in the transfer equation 
is solved explicitly but the spatially stiff material-radiation 
interaction terms are treated implicitly, and a completely 
implicit scheme in which both the advection and the 
material-radiation interaction terms are treated implicitly. 
Using several test problems, we demonstrate in Section 3 
that the operator-split explicit-implicit scheme can generate 
stable and accurate solutions while keeping steep features 
resolved to only a few zones wide. Traditional implementa- 
tions of implicit versions of the method suffer from much 
more numerical diffusion. However, we have found that this 
diffusion can be reduced considerably by improving the 
estimate of the time averaged fluxes needed in the implicit 
scheme, and we describe a method of achieving this 
(applicable only to the solution of the time dependent 
transfer equation) in Section 2.2. Finally, in Section 4, we 
present our conclusions. 

2. THE NUMERICAL METHODS 

Write the time dependent radiative transfer equation as 

(1) 

where, as usual, I denotes the specific intensity, K the 
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opacity, S the source function, and x is measured along the 
direction of propagation. We have suppressed the frequency 
and angle dependence of the radiation field in Eq. ( 1) and 
we discuss only the formal solution of the transfer equation 
at a particular frequency and along a particular ray in the x 
direction. Solutions for other angle-frequency choices are 
identical. For simplicity we assume that K and S are con- 
stant in time; generalization to time-dependent source/sink 
terms is straightforward. 

Clearly, Eq. (1) reduces to a simple one-dimensional 
advection equation if K = 0, which motivates the examina- 
tion of hydrodynamical advection algorithms in the first 
place. To apply such methods, we discretize the computa- 
tional domain in space (so that x + xi, where i = 1, N) and 
time (so that t + t”). Equation (1) can then be finite 
differenced as 

where Ax = xi+, - xi, At = t”+ ’ - t”, and the superscript 
n + 0 on the dependent variables is used to denote the 
variable time centering given by X”+’ = 8X”+ ’ + (1 - 0) X”. 
Note that 0 = 1 gives a fully implicit scheme, 8 = 4 gives a 
Crank-Nicholson scheme, and 8 = 0 gives an explicit 
scheme. The quantities IF:,“,, are the time centered fluxes of 
the specific intensity located at zone interfaces (denoted by 
the half integer subscripts). These fluxes can be computed 
by several possible upwind monotonic interpolation 
schemes, as described below. 

There are three monotonic interpolation schemes 
currently in general use. The first-order-accurate donor-cell 
method assumes the interpolated variable is constant within 
a zone so that the upwind values are given simply by 

i 
I 

I;- L,2 = f - l 
if u;>O 

Ii if u, < 0, 

where u, is the advection velocity relative to the grid 
measured at the zone interfaces. For our purposes, ui = + c 
for radiation propagating to the right, or ui = -c for radia- 
tion propagating to the left. 

The second-order-accurate scheme due to van Leer [l] 
uses a piecewise linear function to describe the distribution 
of the interpolated variable within a zone, leading to 

c- I,2 = 

if u,>O 
I, - (1 + ui At/Ax)(dIi/2) 

I if ui<O, 

where the dI, are the monotonized van Leer slopes 
computed from 

dI; = li+l-zi-l 

if (Ii+1 -ri)(zi-Ii~,)>o (5) 

otherwise. 

The monotonicity constraint Eq. (5) is designed to ensure 
that the value of I,+ ,,* always lies between the adjacent 
values of the interpolated variable (i.e., ZiPI and Ii for Ii- 1,2, 
and Ii and Ii + I for Ii+ ,,2 ). Thus, the monotonic piecewise 
linear scheme can never introduce new extrema into the 
interpolated function, which is a crucial aspect of a stable 
scheme. Without the monotonicity constraints, the growth 
of short wavelength sawtooth instabilities is not suppressed. 

The third-order-accurate piecewise-parabolic advection 
(PPA) method developed by Colella and Woodward [2] 
(hereafter CW) uses parabolic interpolation within a zone 
to compute the interface values. The method can be written 
as 

I 

IR,j~I+5(Ii~I-IR,j~L)+5(1-5) 

I’- I,2 = 
X(2Ij-,-Z,,i-,-Z,,j-,) if uj>O 

I,i+~(Ii-I,,i)+4(1-4) 
(6) 

x (21, - I,, i - I,, i) if ui < 0, 

where r = ui At/Ax, and the I,,i and IR,i are the monotonic 
left and right interface values for zone i. A detailed descrip- 
tion of the method used to compute I,,, and IR,i, including 
the monotonicity constraints and steepeners, is given in CW 
and will not be repeated here. 

The order of accuracy of the interpolation scheme used 
has a great effect of the numerical diffusion inherent in the 
solution. Thus, while the first-order donor-cell method is 
the simplest to implement, it suffers from an unacceptably 
large diffusion and is, therefore, not recommended. 
The second-order-accurate van Leer scheme represents a 
good compromise between accuracy, speed, and ease of 
implementation. Although it is the most difficult to imple- 
ment, the third-order accurate PPA scheme, including 
steepeners, produces the smallest amount of diffusion of the 
three schemes, and should be used whenever practical. 

Although the difference equations given above for each of 
the three upwind monotonic interpolation schemes (i.e., 
Eq. (3) for the donor-cell method, Eqs. (4)-(5) for the van 
Leer method, and Eq. (6) and the difference equations given 
in CW for the PPA method) are all that is needed to imple- 
ment an algorithm for the solution of the finite differenced 
transfer equation (2) the complexity of the numerical 
method used to solve these equations depends upon 
whether the advection term is treated explicitly or implicitly. 
We describe both possibilities in the next two subsections. 

2.1. An Operator-Split Explicit-Implicit Scheme 

Upwind monotonic interpolation methods are easiest to 
implement for explicit time differencing. However, the 
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material-radiation interaction term on the RHS of Eq. (2) 
must be treated implicitly for stability. This dichotomy can 
be resolved by using an operator-split procedure. In the 
splitting formalism, the numerical solution to the difference 
equations is generated at each timestep by two separate sub- 
steps. In the first substep, an explicit update of the advection 
term is performed using the difference equation 

,,+u- 1: = 5 (4, ,,* - c- l/2), (7) 

where the fluxes I? , + i,* are computed by interpolating at the 
old time level usingany one of the three upwind monotonic 
schemes, and Z; +a denotes the partially updated intensity 
resulting from this first substep. In the second substep, we 
update the material-radiation interaction term implicitly 
using 

q+’ -zp+u= c At K&S-Z;+~), (8) 

where I;+‘= 0Z:+’ + (1 - (3) I;‘“. In this work we have 
assumed that all material properties are time independent; 
thus the time centering of rci and Si is not a concern. In 
general, however, the material properties can be highly time 
dependent. In such cases, one must use the time centered 
values KY+’ and S; + ’ in Eq. (8) for stability. 

Since there is no spatial coupling between unknowns at 
the advanced time n + 1 in Eq. (8), it can be rearranged to 
give an effectively explicit expression for Z’ + ‘, namely, 

,;+l = (Z;+“+cAtq[S,-(l-@I;+“]} 
(l+cAtrc,O) ’ (9) 

When the partial update in Eq. (9) is done, the full timestep 
is complete and the value Zl + ’ can be used to begin the next 
timestep. Equations (7) and (9), solved sequentially at each 
timestep, represent the full update. 

We demonstrate in Section 3 that the operator split 
scheme can be used to generate stable and accurate solu- 
tions for the time dependent transfer equation in both opti- 
cally thin and thick media. Since the advection is treated 
explicitly, the operator split scheme is able to propagate 
steep fronts with very little diffusion. Moreover, the splitting 
of the material-radiation interaction term into a separate 
implicit step allows a straightforward treatment of detailed 
energy balance in, say, a non-equilibrium medium. We note, 
however, that due to the explicit nature of the advection, the 
timestep used in the operator split scheme is limited by 
the usual CFL stability criterion for advection, namely 
At < Ax/c. 

2.2. A Completely Implicit Scheme 

In order to circumvent the CFL limit on the timestep, it 
is necessary to treat the advection term implicitly as well. 

For the variable time centering used in Eq. (2), an implicit 
advection scheme is generated by computing the time 
centered fluxes as 

(10) 

where the Z;+ ij2 are computed by interpolation at the old 
time level n using any one of the three upwind monotonic 
schemes, and Z:$;,, are computed by interpolation at the 
new time level & + 1. Due to the spatial coupling in the 
advection term and the interpolation formulae, the time 
implicit difference equations represents a set of N coupled 
equations for the N unknowns Z” ‘. Furthermore, the van 
Leer and PPA interpolation formulae involve evaluating 
non-linear terms. Thus, the implicit interpolation equations 
at time level n + 1 for these schemes must be solved with 
iterative methods (e.g., a Newton-Raphson method). 

The need to solve the coupled difference equations all at 
once as a matrix system makes the implicit scheme much 
more complicated. Furthermore, the use of variable time 
centering for the interpolated variables Eq. (10) does not 
necessarily lead to accurate estimates of the time averaged 
flux. We discuss this point further in the context of solutions 
to particular test problems in Section 3. We note, here, 
however, that the fact that the speed of propagation of 
radiation is temporally and spatially constant can be 
exploited to generate a more efficient and accurate method 
for estimating the time averaged fluxes through each inter- 
face. This estimate is based on computing the domain of 
dependence for each interface, i.e., the upwind position of all 
radiation that will pass through a given interface in one 
timestep. Since c does not vary, all radiation that is upwind 
of an interface within a distance of c At will pass through 
that interface in the timestep At. The total flux passing 
through the interface is then calculated by spatially inte- 
grating the amount of radiation upwind of the interface 
in the domain of dependence (i.e., upwind of the interface 
within a distance c At). In general, for an implicit scheme 
c At/Ax > 1, so that integration over more than one zone 
will be required. Let m represent the integer part of the 
Courant number, i.e., m = [c At/Ax], and let r represent the 
remainder, i.e., r = c At/Ax - [c At/Ax]. Then, by inte- 
grating over the domain of dependence, the flux of radiation 
through each interface, I,*- ,12, can be written as the sum of 
two parts 

I ,t, zi~k+z~i-m)-&r Ax) 

I,*- l/2 = 
if u=c 

m-1 (11) 

,;, ‘j+k + Z(i+m- Ij+ 1j2(r Ax) 

\ if u = -c. 
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The first term in Eq. (11) represents the contribution to the 
interface flux from all upwind zones which are completely 
traversed in one timestep. The second term represents the 
fractional contribution to the flux from the farthest upwind 
zone. It is computed using one of the three upwind 
monotonic interpolation algorithms described in Section 2 
(i.e., donor cell, Van Leer, or PPA) at the xc,_ m)p 1,2 
(x cr+m- 1,+I,z) interface f or rightward (leftward) propa- 
gating radiation and using the distance r Ax to compute 
the interpolation functions rather than the full c At. For 
optically thick media, each term in Eq. ( 11) (including each 
of those in the first sum) must be attenuated by a factor e-‘, 
where T is the optical depth to the xi- ,,2 interface. 

This idea has shown encouraging results when used 
with a non-monotonic interpolation scheme [3]; however, 
the solution was marred by oscillations typical of 
unmonotonized schemes. As discussed in Section 3, when 
monotonic interpolation schemes such as those described 
above are used to perform the spatial integration, a scheme 
which is as accurate as the explicit advection methods is 
possible. Moreover, since the total flux at each interface is 
calculated by integrating over the domain of dependence at 
time level n, the difference equations are once again 
decoupled, and neither a costly solution of a matrix equa- 
tion nor an iterative method are required. The scheme is 
also not subject to the CFL timestep constraint. 

3. THE RESULTS OF TWO TEST PROBLEMS 

In order to demonstrate the performance of upwind 
monotonic interpolation schemes in solving the time 
dependent transfer equation, we consider two test problems. 
Both problems involve the propagation of a steep front of 
radiation intensity. 

3.1. &attenuated Square Wave 

The first test is the propagation of a square wave of radia- 
tion intensity in an optically thin medium. The problem is 
initialized by choosing K~= Si= 0 and Ii=0 at t = 0. A 
square wave of radiation intensity propagating from left to 
right is then introduced at the left boundary condition, so 
that I, = 1 for t 2 0 there. One hundred equally spaced 
gridpoints on the domain x E (0, 100) are used, and the 
problem is stopped when ct = 80. The numerical results for 
the operator split explicit-implicit scheme described in 
Section 2.1 using the donor cell, van Leer, and PPA inter- 
polation schemes are shown in Fig. 1 (plotted as points), 
as well as the analytic solution to this problem (plotted 
as a solid line). The Courant number is chosen to be 
Co = c At/Ax = 0.5, although for explicit advection schemes 
the results are independent of the value of the Courant num- 
ber. The results presented in Fig. 1 are identical to those 
obtained for hydrodynamical advection problems using the 
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FIG. 1. Results for the propagation of an unattenuated square wave of 
radiation intensity using the donor cell (top), van Leer (middle), and PPA 
(bottom) monotonic interpolation methods in an operator split 
explicit-implicit scheme. The analytic solution for this problem is shown as 
a solid line. 
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same schemes [4], as expected. The donor cell method 
represents the most diffusive of the three methods, with the 
radiation front being smeared over roughly 20 zones. The 
PPA scheme, including steepeners, is clearly the least 
diffusive; it keeps the front resolved to only two zones 
wide. Note the monotonicity constraints prevent unphysical 
oscillations behind the front in all three schemes. 

The results obtained with the implicit version of the 
upwind monotonic interpolation schemes with variable 
time centering and a Courant number C, 2 1 are similar to 
those given previously by Mihalas and Klein [S] (hereafter 
MK) for other implicit schemes. In particular, for a fully 
implicit time centering (0 = 1) at large Courant numbers 
(C, > 10) the scheme has unacceptably large numerical dif- 
fusion, with the result that the front is smeared over roughly 
50 zones (e.g., see Fig. 3a in MK). This result is independent 
of the order of the spatial interpolation used, since it is not 
the spatial interpolation which dominates the diffusion but 
the temporal averaging. For Crank-Nicholson time dif- 
ferencing (0 = i), we find that even with monotonic schemes 
unphysical oscillations occur behind the front (e.g., see 
Fig. 3b in MK). The amplitude of these oscillations 
increases with the order of the interpolation scheme used 
and with the magnitude of the Courant number. These 
oscillations can be attributed not to the interpolation 
schemes, but rather to the variable time centering used to 
estimate the time averaged flux. For this test problem, the 
flux at each zone interface is a step function in time. Thus, 
the variable time centering method for estimating the time 
averaged flux (10) gives a very poor result in this case. In 
fact, for zones at the front of the discontinuity, it can grossly 
overestimate the divergence of the flux there, leading to 
overshoots in the radiation intensity, which then drives 
oscillations behind the front. 

The oscillations behind the front can be eliminated only 
by using a more accurate estimate of the time averaged flux 
through zone interfaces. In Section 2.2., we suggested that 
computing the fluxes through each interface by spatially 
integrating over the domain of dependence would give more 
accurate results. Indeed, we find that by computing fluxes in 
this manner, the completely implicit scheme gives results for 
the unattenuated square wave test problem which are 
identical to those presented in Fig. 1 for arbitrary values of 
the Courant number. 

3.2. Attenuated Square Wave 

For this test problem, we again choose Si = 0 and Zi = 0 
for t > 0, but we now set ~~ = 0.02. One hundred equally 
spaced zones on the domain x E (0, 100) are used so that the 
total optical depth across the grid is two. As before, a square 
wave of radiation intensity propagating from left to right is 
introduced through the left boundary condition, and the 
problem is stopped at ct = 80. The numerical results for the 

operator split explicit-implicit scheme for each of the three 
interpolation schemes are shown in Fig. 2 as points, while 
the analytic solution is shown as a solid line. Once again, we 
find that the donor cell method is the most diffusive of the 
three schemes, whereas the PPA scheme keeps the initial 
discontinuity resolved to only two zones wide. All schemes 
correctly follow the exponential decay of the radiation 
intensity with no unphysical oscillations. However, the PPA 
result does show an unphysical bump immediately behind 
the discontinuity. This feature has been noted previously 
[6] in the solution of the Buckley-Leverett equation by 
similar methods. These authors demonstrated that the 
bump was a result of the lack of resolution at the upper 
corner of the discontinuity and found that it could be 
eliminated by adding more gridpoints there (e.g., by using 
an adaptive grid method). We note that the results for the 
donor ceil and van Leer schemes do not show this bump, as 
the higher numerical diffusion in these methods has 
smoothed it away. The appearance of this bump is therefore 
a reflection of the extremely low diffusivity of the PPA 
scheme (which is also witnessed by the ability of the scheme 
to keep steep fronts resolved to only two zones). Since 
adaptive grid methods removed the appearance of the bump 
in other contexts, it is likely that their application to the 
solution of the time dependent transfer equation would also 
improve the results given here. With the monotonic inter- 
polation schemes described in this paper, the adaptation of 
adaptive grid methods to solving the time dependent 
transfer equation would be straightforward. 

The results for the attenuated square wave test problem 
generated by implicit versions of upwind monotonic 
schemes using variable time centering and a Courant num- 
ber C, > 1 are again similar to those given previously. The 
results for fully implicit time centering (0 = 1) are unaccep- 
table due to the large amounts of numerical diffusion (e.g., 
see Fig. 5a in MK), while the results for Crank-Nicholson 
time centering (6 = i) show oscillations behind the front due 
to incorrect values for the divergence of the flux for zones at 
the front of the discontinuity (e.g., see Fig. 5b in MK). 

The results generated by the implicit version of the 
scheme for this test problem can be considerably improved 
by using the improved estimate of the time averaged flux 
through each interface given by spatially integrating over 
the domain of dependence of each interface, as described in 
Section 2.2. For an optically thick medium, one must take 
care to attenuate the contribution to this flux from each 
upwind zone by the optical depth of the zone from the inter- 
face. We have found that when the fluxes are computed in 
this manner, results similar to those shown in Fig. 2 can be 
achieved with the implicit scheme for arbitrary values of the 
Courant number. 

Finally, to demonstrate the applicability of upwind 
monotonic schemes to very optically thick media, we give in 
Fig. 3 the results of repeating the attenuated square pulse 
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FIG. 2. Results for the propagation of an attenuated square wave of 
radiation intensity with K = 0.02 and using the donor cell (top), van Leer 
(middle), and PPA (bottom) monotonic interpolation methods in an 
operator split explicit-implicit scheme. The analytic solution for this 
problem is shown as a solid line. 

FIG. 3. Results for the propagation of an attenuated square wave of 
radiation intensity with K = 0.5 and using the donor cell (top), van Leer 
(middle), and PPA (bottom) monotonic interpolation methods in an 
operator split explicit-implicit scheme. The analytic solution for this 
problem is shown as a solid line. 
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test problem with IC = 0.5 (which gives an optical depth of 50 
across the mesh). The numerical results from the operator 
split explicit-implicit scheme for each of the three interpola- 
tion methods are shown as points, while the analytic solu- 
tion is shown as a solid line. Both the van Leer and PPA 
scheme follow the exponential decay of the pulse over 17 
orders of magnitude very well. However, because the 
piecewise-constant donor cell interpolation scheme is 
unable to accurately follow such a steeply varying function, 
it severly overestimates the pulse amplitude. All schemes 
show a small amplitude diffusive “precursor” to the pulse 
which (because an explicit advection scheme is used) advan- 
ces one zone every cycle. The PPA scheme clearly shows the 
smallest such precursor, with the amplitude dropping by 
roughly one order of magnitude for each zone ahead of the 
pulse. Considering that the higher-order methods follow the 
decay of the pulse over 17 orders of magnitude in only 80 
zones, their performance must be considered to be good on 
this hard problem. 

4. CONCLUSIONS 

We have demonstrated the use of upwind monotonic 
interpolation methods for the solution of the time 
dependent transfer equation in both optically thin and 
thick media. The methods can be implemented in either an 
operator split explicit-implicit scheme, in which the advec- 
tion term is treated explicitly and the material-radiation 
interaction term is treated implicitly, or in a completely 
implicit scheme. 

The operator split explicit-implicit scheme gives excellent 
results for the propagation of steep fronts of radiation inten- 
sity in optically thin and thick media. Using higher order 
interpolation methods, the scheme can keep radiation fronts 
resolved to only a few zones wide, while the solution behind 
the front shows no unphysical oscillations which plague 
other schemes based on unmonotonized interpolation 
methods. The scheme is simple, efficient, easy to code, and 
the operator splitting allows the treatment of detailed 
energy balance in a non-equilibrium material to be 
implemented in a separate implicit step in a straightforward 
fashion. However, the timestep used in this scheme is limited 
by the CFL criteria for the advection term, i.e., AZ < Ax/c. 

Implicit versions of the methods can be constructed by 
using either variable time centering, or by spatial integra- 
tion over the domain of dependence, to estimate the time 
averaged flux through each interface. The former leads to 
either unacceptably large amounts of numerical diffusion 
(for a fully implicit scheme) or unphysical oscillations 
behind the front (for Crank-Nicholson time differencing). 
Spatially integrating over the domain of dependence leads 
to accurate estimates of the flux through each interface for 
problems involving the propagation of sharp fronts. With 
this latter scheme, results similar to those achieved with the 

operator split explicit-implicit scheme are found for 
arbitrary values of the Courant number in both optically 
thin and thick media. However, the implicit scheme is much 
more cumbersome to implement, especially if the opacity 
has strong spatial variation. 

Although we have presented results only for 1D planar 
geometry with a uniform grid, we expect that they will apply 
in other cases as well. In 1D spherically symmetric media 
the transfer equation is commonly solved along straight 
rays tangent to the spherical shells representing the radial 
grid. If the radial mesh is sufficiently fine, the grid induced 
by these shells on a particular ray will be fairly uniform. 
Since each of the upwind monotonic interpolation methods 
can be adapted for a non-uniform grid, our results should 
be applicable here. In 2D media, the situation is more 
complicated. For instance, a long characteristic in a planar, 
rectangular 2D mesh will intersect grid lines at very 
irregular spacings along the ray. The best solution in this 
case may be to interpolate all material properties from the 
rectangular 2D mesh onto a quasi-uniform grid along the 
ray. The solution then proceeds as above. In 2D cylindrical 
symmetry the tangent rays of the 1D spherical problem 
generalize to a set of tangent planes. Thus any satisfactory 
method for the 2D planar problem carries over into 
cylindrical geometry. The applicability of the method 
described in this paper to these other geometries needs to be 
investigated. 

Upwind monotonic interpolation schemes therefore show 
great promise for solving problems involving the propaga- 
tion of steep fronts of radiation intensity. It is anticipated 
that the application of other sophisticated algorithms 
developed for hydrodynamical problems (e.g., adaptive grid 
methods) to the solution of the time dependent transfer 
equation will lead to a further improvement of the results 
presented here. 
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